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Abstract

The need for adaptive sampling arises in the context of high through-
put data because the rates of data arrival are many orders of magni-
tude larger than the rates at which they can be analyzed. A very fast
decision must therefore be made regarding the value of each incoming
observation and its inclusion in the analysis. In this report we discuss
one approach to adaptive sampling, based on the new data point’s
similarity to the other data points being considered for inclusion. We
present preliminary results for one real and one synthetic data set.

1 Introduction

In many modern-day problems, decisions are made based on enormous
amounts of constantly streamed data. The rates at which these high
throughput data arrive are so great that it is computationally imprac-
tical or even impossible to include every single incoming observation
in the analysis. For example, in the context of cybersecurity and net-
work monitoring, various network flow measurements are constantly
updated and input into an algorithm that determines whether a threat
or a problem is present in the system. Because of the overwhelming
rates of data collection, only a fraction of the incoming observations
can be processed by such an algorithm. Thus, a very fast decision
must be made regarding inclusion or exclusion of each data point,
creating a need for adaptive sampling. In this report, we discuss one
possible approach to this, based on similarity measures, and present
some preliminary results for one real and one synthetic data set.
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The objective of adaptive sampling is to determine whether a given
point should be discarded from training or updating the PF model in
order to make the computational burden manageable. This decision
clearly requires specifying a utility metric, or a measure of the value
a given point will add to the quality of estimates of various quantities
being modeled by the PF. All such utility metrics can be broadly
divided into two groups. One group consists of metrics that are not
specifically tied to the PF model in any way and can be used with
any other modeling approach. We will refer to this type of metrics
as “PF-agnostic”. This is in contrast to the utility metrics that are
based on quantities within the PF model, or “PF-specific” metrics.
In this report, we will focus on the PF-agnostic metrics, but will also
briefly mention our current work on PF-specific metrics.

2 PF-Agnostic Metrics

For this type of metrics, we assume that we have a batch of observa-
tions from which we are to select a subset to use for training the PF.
This affords us the possibility of judging any point’s utility relative to
the other points in the batch. Note that this is in contrast to a fully
streaming context in which a decision is made about a single observa-
tion on its arrival without reference to any other observations seen in
the past or concurrently with the given observation.

All of the PF-agnostic metrics we consider are based on a given ob-
servation’s degree of similarity to the other observations in the batch.
If an observation is very similar to many others in the batch, it may
be redundant and may thus be a good candidate for being discarded.
While clustering methods can be a highly accurate way to measure ob-
servations’ degree of similarity to one another, clustering algorithms
are too computationally expensive to be used in settings where a de-
cision about any given point must be made quickly, such as in our
setting. We thus considered less ideal, but more tractable alterna-
tives, the Euclidean distance and the cosine similarity measure.
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2.1 Euclidean Distance

The Euclidean distance (ED) between two input vectors x1 and x2 is
given by

d(x1, x2) =

√∑
i

(x1i − x2i)2. (1)

The above definition is only valid for numerical inputs, so in the case
of categorical inputs, these first have to be transformed to a numerical
measurement. For example, in the case of email data described in Sec-
tion 2.3.1, the inputs are text tokens encountered in an email. These
can be transformed to frequencies of occurrences of each encountered
token before computing a Euclidean distance between then.

Once EDs between a given point and all other points in the batch
are computed, a summary statistic, e.g., the median or the minimum,
of all such distances can be obtained. If one wants to remove a given
number or fraction of points, one approach is to then simply discard
the points with the lowest values of this statistic. In the presence of
heavy clustering in the input space, however, this scheme can lead
to a significant bias in the distribution of the output values in each
cluster of the training set, i.e., the set of remaining points. This is
because such a dropping scheme disproportionately favors points near
the edges of each cluster. This bias in the training set will clearly
result in biased predictions for the new data, making this approach
problematic.

Therefore, instead of this deterministic approach, we considered
a probabilistic modification of it. In particular, each point’s distance
summary statistic is first calculated and normalized to the range of all
the points’ values of this statistic in the dataset, resulting in a value
between 0 and 1.

Let q denote a point’s normalized distance summary statistic and
f the desired fraction of points to be removed from the dataset. As-
sume that q is defined so that the probability of an observation being
discarded is a decreasing function of q, such as in the case of the min-
imum distance (i.e., distance to a point’s nearest neighbor). If the
mean value of the statistic in the dataset q̄ < f , then the point is
discarded with probability p given by

p =

{
1− cq q ≤ 1/c

0 q > 1/c
(2)
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where c satisfies

(1− cE(q | q ≤ 1/c))P (q ≤ 1/c) = f. (3)

If, on the other hand, q̄ ≥ f , each point is discarded with probability
p given by

p =

{
c(1− q) q ≥ 1− 1/c

1 q < 1− 1/c
(4)

where c satisfies

1− (1− c + cE(q | q ≥ 1− 1/c))P (q ≥ 1− 1/c) = f. (5)

Note that the left-hand-sides of both (3) and (5) are just the expected
values of p in (2) and (4), respectively. The parameter c in both
cases is thus simply a tuning constant that ensures that the expected
fraction of discarded points is equal to the target value f .

If the distance statistic q is chosen so that the probability of dis-
carding an observation is an increasing function of the point’s value
of q, then the right-hand side of equations (2) and (4) is replaced by
one minus itself.

2.2 Cosine Similarity

An alternative way to measure the degree of similarity between two
vectors x1 and x2 is the cosine similarity (CS), given by

c(x1, x2) =
< x1,x2 >

||x1|| × ||x2||
=

∑
i x1i · xi2√∑

i x
2
1i ×

√∑
i x

2
2i

. (6)

This measure is thus equal to the cosine of the angle between two
inputs. As such, it is only applicable to non-scalar observations.

Unlike the Euclidean distance discussed above, this measure only
reflects the relative orientation of the two vectors and does not take
into account the magnitude of the individual vector components. Thus,
two vectors that are multiples of each other will always have a cosine
similarity equal to 1. In some applications, this feature may be a
drawback.

On the other hand, unlike the Euclidean distance, cosine similarity
is more efficient to compute for highly sparse inputs because only
dimensions for which both vectors are non-zero are involved in the

4



calculation. This makes this measure attractive in applications, such
as text mining and information retrieval [1].

As in the case of the Euclidean distance measure, we considered
both a deterministic and a probabilistic approach to discarding points
based on the cosine similarity measure.

2.3 Performance Study

To investigate the performance of the similarity measures discussed
above as adaptive sampling approaches in the PF setting, we con-
sidered two examples of datasets with categorical outputs, which are
described below.

2.3.1 Example 1: PU1 Corpus Dataset

The PU1 corpus dataset [2] consists of 1099 observations, where each
observation corresponds to an email. The email classification (spam
or legitimate, 481 and 618 observations, respectively) and the token
words encountered in the email’s subject and body are recorded in
each observation. The goal is to predict the email classification from
the tokens in the subject and/or body of the email.

Since the similarity measures discussed above require numerical
inputs, while the tokens in the subject and body of the email are cat-
egorical, these are first transformed to the frequency of each token’s
occurrence. Note that the drawback of using this simple transforma-
tion is that the order of the tokens is not used in judging the degree of
similarity. An alternative would be to use the frequency of n-grams,
for example, in order to capture the token order, but this is much
more burdensome computationally, so this option was not considered
in this study.

The dataset was randomly partitioned into a training and valida-
tion set, each consisting of 990 and 109 observations, respectively. We
considered the following adaptive schemes for discarding the observa-
tions:

1. ED used in a deterministic fashion (ED-D)

2. ED used in a probabilistic fashion (ED-P)

3. CS used in a deterministic fashion (CS-D)

4. CS used in a probabilistic fashion (CS-P)

5. K-means clustering of points (KM)
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6. Spherical k-means clustering of points (SKM)

For the ED-P and the CS-P schemes, we used the minimum dis-
tance, or the point’s Euclidean distance to its nearest neighbor (NN),
and the maximum similarity measure, respectively, as the summary
statistic. In the KM scheme, the points are clustered using the k-
means algorithm [3] and the points furthest from the cluster centroid
are removed, with the number removed from each cluster equal to
the target dropping fraction f of the given cluster’s size. The SKM
scheme is exactly the same, but the clustering is performed using the
spherical k-means algorithm [4]. The number of clusters for both clus-
tering algorithms was chosen to maximize the average of the clusters’
silhouette metrics, which is a measure of how tightly grouped the data
are within each cluster [5].

As alluded to earlier, the rationale for considering the KM and the
SKM schemes is that we expect these two methods to provide an up-
per bound on the performance of similarity measures in terms of the
resulting predictive accuracy. These can be ideal methods for judging
points’ similarity to one another, but they are computationally too
expensive to be used in contexts where a decision about any given
point must be made quickly, as is the case in the high-throughput
data setting. Thus, including them in this study allows us to bench-
mark the similarity methods against some of the best, but too costly,
alternatives.

The training set was reduced by removing 25%, 50% or 75% of all
the points, either randomly or adaptively using schemes 1–6 above.
Using both the subject and body token frequencies to assess an email’s
degree of similarity is more complicated than using just the subject or
the body token frequencies alone, so we decided to use just one of the
two as a starting point. Since a typical email has considerably more
body than subject tokens, we chose using the body token frequencies
to compute the similarity measures. However, the training of the PF
on the full and reduced datasets was done using both subject and
body tokens. The tokens and the email classification were all modeled
using multinomial distribution in the PF implementation.

Thus, for each of the 30 partitions, the PF was trained on the
full training set and the reduced training sets, obtained by dropping
observations randomly, as well as according to each of the 6 adaptive
schemes listed above, for each of the dropping fractions we consid-
ered. The trained PF model was then used to make predictions of the
probability of an email being legitimate for each email in the valida-
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tion set based on its subject and body tokens. A Receiver Operating
Characteristic (ROC) curve can then be constructed to desribe the
probability of labeling a legitimate email as legitimate (true positive)
as a function of declaring a spam email as legitimate (false positive).
The area under this curve, known as the area under the curve (AUC),
is one commonly used summary statistic of the ROC curve. Higher
values of AUC indicate better average accuracy of predictions.

Figure 1 shows the values of the AUC for the 30 experiments de-
scribed above. The first observation that can be made about the
results shown in the figure is that in terms of the AUC values, ran-
dom dropping of points (shown in red) performs as well or better than
using the full training set (shown in grey). This indicates that this
particular training set is not well suited for testing adaptive sampling
since an ideal test case is one in which dropping the points at random
would cause the prediction quality to deteriorate relative to using the
full training set.

Nevertheless, a few features of these results are still worth pointing
out. For example, while the ED-D (shown in green) is one of the best
performers when the dropping fraction is 25% and 50%, its perfor-
mance is very poor when the dropping fraction is at its high level of
75%, for the reasons described in Section 2.1. Indeed, the probabilistic
counterpart of ED-D, ED-P (shown in blue), performs much better
for 50% and 75% dropping fractions (and is the best performer for
75% dropping fraction, outperforming even the KM dropping scheme,
shown in yellow), confirming the expectation that motivated the use
of the ED-P metric. Thus, even though random sampling performed
as well as using a full training set, the ED-P metric was an even better
option in this case.

Also, the cosine similarity measures, CS-D (shown in cyan) and
CS-P (shown in magenta), are both quite poor performers in this
dataset although, unsurprisingly, when the dropping fraction is high,
the probabilistic version, CS-P, performs better than its determin-
istic counterpart, CS-D, for the 75% dropping fraction. Finally, as
expected, the KM scheme (shown in yellow) is one of the best per-
formers although, as mentioned previously, it is outperformed by the
ED-P scheme when the dropping fraction is at its highest level.

The AUC is just one statistic reflecting the quality of a PF-trained
model. To make a more complete assessment of the benefit of adaptive
sampling, one should compare the estimates of the joint and marginal
token distributions that result from the full dataset and each of the re-
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duced datasets (indeed, the AUC value is based on such an estimate).
This comparison is likely to reveal more differences, particularly if the
distribution of the full training set contains some subtle features that
a reduced training dataset would be unlikely to capture unless it is
carefully chosen through adaptive sampling. The capability to obtain
detailed density estimates is currently being implemented, and this
comparison will be completed in the near future.

2.3.2 Example 2: Gaussian Mixture Test Data

One situation in which random sampling can perform very poorly is
when the data are heavily clustered, with some of the clusters contain-
ing relatively small fractions of the data. In this case, if the dropping
fraction is large relative to the fraction of the data in the small clus-
ter, dropping observations randomly can result in a reduced training
set containing very few or even no points from the small cluster, thus
heavily biasing the model. Adaptive sampling, on the other hand, is
much more likely to capture the points in the small cluster.

To compare the performance of the adaptive sampling measure to
that of random sampling, we designed a training dataset containing
800 observations. Each observation consists of two features. One
is a mixture of two Gaussians, given by 0.97N(0.1, 1) + 0.03N(8, 1).
The other feature is a categorical label, 1 or 2, and is completely
determined by the cluster membership of the Gaussian feature. This
dataset is shown in Figure 2. As can be seen from the plot, there
are two very well separated clusters, with one significantly smaller
(20 observations, or 2.5% of the data) in size than the other (780
observations, or 97.5% of the data), and the cluster membership is
equal to the categorical label (one shown in red and the other in
green).

The dataset was randomly divided into a training set, containing
600 observations, and a validation set, containing 200 observations.
Then as in the case of the email data, the dataset was reduced us-
ing random and adaptive sampling schemes. Since there is only one
continuous feature, we cannot use the cosine similarity measure or
spherical k-means in this dataset, so swe only considered ED-D, ED-P
and KM methods. The dropping fractions we considered were 25%,
50%, 75%, 90% and 95%. The PF model was then trained on the full
and each of the reduced datasets and the labels in the validation set
were predicted using this model. This experiment was repeated 200
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times.
Because of a very simple and clustered structure of this dataset,

there are only 2 possible AUC values, 1 and 0.5. if there is at least
one observation from each cluster in the training set, the prediction
will be perfect, resulting in AUC value of 1. If, on the other hand,
one cluster is completely left out of the training set, prediction for the
observations in that cluster in the validation set will always be wrong
by definition. This will result in the AUC value of 0.5, corresponding
to a random guess classifier. Thus, random sampling is particularly
risky in this setting when the dropping fraction is high relative to the
percentage of points in the smaller cluster.

In fact, one can analytically compute the probability of not cap-
turing any observations from the smaller cluster in a dataset reduced
via random sampling, as the number of points from the smaller cluster
in such a setting follows the Hypergeometric distribution. Specifically,
for a given dropping fraction f , the probability of a random sample
of size 600(1− f) containing no observations from the smaller cluster
is given by (

585
600(1−f)

)(
600

600(1−f)

) (7)

since the training set contains 0.025×600 = 15 points from the smaller
cluster and, accordingly, 585 points from the larger cluster (the train-
ing sets were drawn to preserve this distribution in each experiment).
This probability is clearly an increasing function of f and for our cho-
sen dropping fractions f = 0.25, 0.5, 0.75, 0.9 and 0.95, this probability
is equal to 0, 0, (both to 5 decimals) 0.01, 0.2 and 0.46, respectively.

These theoretical values are very close to what we observed in our
simulations: using random sampling to reduce the dataset resulted
in the AUC values of 0.5 in 0%, 0%, 0.5%, 16% and 43% of the 200
experiments for the 5 dropping fractions, respectively (AUC was 1 in
the remainder of the experiments for each of the 5 fractions). All the
other dropping schemes (and, of course, the full training set) resulted
in the AUC value of 1 100% of the time because, as explained before,
they all captured the data from the smaller cluster no matter how
small the training set was. Table 1 summarizes these results in terms
of the percentage of experiments that resulted in the AUC value of 1
for each of the schemes and dropping fractions.

This example is clearly not realistic in a sense that due to very
heavy clustering, there is no loss in predictive ability when using a
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Dropping fraction
Sampling scheme 25% 50% 75% 90% 95%
Random sampling 100 100 99.5 84 57
Full and AS schemes 100 100 100 100 100

Table 1: Percentage of 200 experiments that resulted in the AUC value of
1 for each of the sampling schemes and dropping fractions. The remaining
experiments resulted in the AUC value of 0.5 for the reasons explained in the
text.

reduced training set obtained with adaptive sampling schemes com-
pared to the full training set. In real datasets, this will almost never
be the case. However, the example does illustrate the benefit of adap-
tive sampling, using similarity measures in particular, over random
sampling. High dropping fractions that lead to a significant deterio-
ration in random sampling’s predictive ability may indeed correspond
a realistic scenario in which the data arrive at an extremely high rate
relative to the analysis rates one can reasonably attain.

2.4 Summary and Future Work

The two examples discussed above suggest that using certain similarity
measures for adaptive sampling can be beneficial relative to random
sampling and in some cases even relative to using the full dataset, as
in the case of the email data. In particular, the probabilistic version of
the Euclidean distance metric, ED-P, emerged as the best performer
for higher dropping fractions in that example. The Gaussian test
set example illustrated the risk associated with random sampling and
high dropping fractions in cases of clustered data with very imbalanced
cluster counts.

More datasets need to be considered to validate these findings and
in particular, datasets in which random sampling leads to a deteriora-
tion in the model’s quality, as this is the motivation for carrying out
adaptive sampling. Moreover, as mentioned above, the comparison
should be made in terms of the density estimates produced by the
different sampling methods, rather than AUC values alone, as such
a comparison is more refined and is more likely to expose any differ-
ences in the quality of the resulting models. Both of these tasks are
the subject of current work.
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The similarity measures and, more generally, any PF-agnostic meth-
ods have two limitations. As discussed previously, they can only be
used in a batch mode: any one point’s utility can only be assessed
relative to a set of points in a batch rather than by itself in isolation
as it arrives. However, the ability to make a decision about a point
in a streaming fashion is clearly a very desirable feature. In addition,
the agnostic aspect of the PF-agnostic methods means that they do
not directly leverage the information that is of particular interest in
the PF context.

For this reason, we are currently working on implementing a PF-
specific metric. Since the overarching goal of the PF is density estima-
tion, one way to assess a given point’s value is to predict its likelihood
or, equivalently, its log-likelihood without using the PF (since the
point of using adaptive sampling is precisely to avoid using the PF
on every observation). This approach will be covered in detail in a
separate report.
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Figure 2: The Gaussian mixture dataset, consisting of 20 observations in one
cluster and 780 observations in the other. The y-axis show the value of the
continuous Gaussian mixture feature. The two colors indicate the categorical
feature label, which is perfectly correlated with the cluster membership.
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